TEACHERS AS SCHOLARS: UNDERSTANDING GLOBAL WARMING

Gabriel Vecchi & Mike Winton

18 Jan 2011

NOAA/GFDL

EARTH'S ENERGY BALANCE IS THE KEY TO GLOBAL CLIMATE CHANGES

I) Only a small minority of atmospheric molecules contribute to the greenhouse effect

- 2) Water vapor, the most important greenhouse gas, is present in an amount determined by temperature (it acts as a positive feedback)
- 3) The change in greenhouse effect from changing a greenhouse gas concentration depends on the fractional change

Wikipedia

CO₂ AND CLIMATE: PALEOCENE-EOCENE WARM EVENT

CO2 AND CLIMATE: ICE AGE CYCLES

Atmospheric CO₂ is increasing

ATMOSPHERIC CO₂ WAS

STABLE PRIOR TO THE 19TH

CENTURY

THE RISE IN GREENHOUSE GASES OCCURRED IN THE INDUSTRIAL ERA WITH INCREASED USE OF FOSSIL FUELS

The chemical fingerprint of the atmospheric carbon increase tells us:

- 1) the added carbon is old (14C is low)
- 2) it has a biological source (¹³C is low)
- 3) it is produced by combustion or respiration (O_2 is decreasing)

Where Do Human Carbon Emissions Go?

Source: D. Archer lecture

EARTH'S SURFACE IS WARMING Annual Mean Surface Temperature Anomaly (°C) 2010, warmest (tie) of 131 years 0.63 2005, warmest (tie) of 131 years 0.62 Global Land-Ocean Temperature Index 1998, 3rdwarmest (tie) of 131 years 0.56 Base Period: 1951-1980 - Annual Mean 5-year Running Mean emperature Anomaly (°C 3 4.8 GISS Temperature 1900 1920 1940 1960 1980 2000 1880

THE OCEANS ARE WARMING

SNOW & ICE ARE DECLINING GLOBALLY

Year

SEA LEVEL IS RISING (ice melt + seawater expansion)

THERE ARE
NUMEROUS
ANTHROPOGENIC
FORCINGS OF
CLIMATE CHANGE

EMISSIONS GROWTH HAS POWERFUL SOCIO-ECONOMIC DRIVERS

CLIMATE MODEL EQUATIONS ARE SOLVED ON GLOBAL GRIDS

SIMULATED VS. PARAMETERIZED

- **Simulated** processes: larger than grid-scale, based on bedrock scientific principles (conservation of energy, mass and momentum). Example: storms.
- **Parameterized** processes: smaller than grid scale, formulations guided by physical principles but also make use of observational data. Example: clouds.
- As model **resolution** increases, we are able to simulate some processes that are currently parameterized.
- As model comprehensiveness increases, we are able to account for more processes (either as parameterized or simulated)

Using Climate Models to Understand the Past: Detection and Attribution

(2) Attribution: anthropogenic forcing is that "something"

(1) Detection: something beyond natural variability is happening to the global climate

Using Climate Models: Detection and Attribution at the Continental Scale

Using Climate Models to Project Future Climate: Need Emissions

IPCC

PROJECTION: 2 I ST CENTURY GLOBAL TEMPERATURE RISES FURTHER

Projection: The Hydrologic Cycle Intensifies

Projected Patterns of Precipitation Changes

Projection: Sea Level Rises Further

Caveat: ice sheet dynamic response not fully modeled

Even if emissions were cut to zero, temperature would fall very slowly

SCIENCE DOES NOT DICTATE ACTION

Basic greenhouse physics

CO₂ increase anthropogenic

Earth is warming

More certain

Warming is anthropogenic

Future climate change

Impacts of future climate change

Less certain

